Search results for " Ubiquitination"

showing 10 items of 11 documents

BAG2 Interferes with CHIP-Mediated Ubiquitination of HSP72

2016

The maintenance of cellular proteostasis is dependent on molecular chaperones and protein degradation pathways. Chaperones facilitate protein folding, maturation, and degradation, and the particular fate of a misfolded protein is determined by the interaction of chaperones with co-chaperones. The co-factor CHIP (C-terminus of HSP70-inteacting protein, STUB1) ubiquitinates chaperone substrates and directs proteins to the cellular degradation systems. The activity of CHIP is regulated by two co-chaperones, BAG2 and HSPBP1, which are potent inhibitors of the E3 ubiquitin ligase activity. Here, we examined the functional correlation of HSP72, CHIP, and BAG2, employing human primary fibroblasts.…

0301 basic medicineTime FactorsUbiquitin-Protein LigasesImmunoblottingHSP72 Heat-Shock ProteinsUbiquitin-conjugating enzymeProtein degradationArticleCatalysisCell Linelcsh:ChemistryInorganic Chemistry03 medical and health sciencesUbiquitinddc:570Humansaging; BAG2; CHIP; HSP72; proteostasis; ubiquitinationPhysical and Theoretical ChemistryHSP72lcsh:QH301-705.5Molecular BiologyCellular SenescenceSpectroscopySTUB1proteostasisBAG2biologyCHIPagingOrganic ChemistryUbiquitinationGeneral MedicineComputer Science ApplicationsUbiquitin ligaseCell biology030104 developmental biologyProteostasislcsh:Biology (General)lcsh:QD1-999Chaperone (protein)biology.proteinRNA InterferenceProtein foldingMolecular ChaperonesInternational Journal of Molecular Sciences
researchProduct

A role for Mog1 in H2Bub1 and H3K4me3 regulation affecting RNAPII transcription and mRNA export.

2018

17 páginas, 12 figuras.

0301 basic medicineChromatin ImmunoprecipitationSaccharomyces cerevisiae ProteinsTranscription GeneticSaccharomyces cerevisiaeBiologyyeastEpigenetic RepressionBiochemistryRNA TransportHistones03 medical and health sciencesHistone H30302 clinical medicineTranscription (biology)Gene Expression Regulation FungalGeneticsHistone H2BMonoubiquitinationEpigeneticsRNA MessengerMolecular BiologyGenemRNA exportepigeneticsUbiquitinationMethylationArticlesTATA-Box Binding ProteinYeastCell biology030104 developmental biologyran GTP-Binding ProteinH3K4me3EpigeneticsRNA Polymerase IItranscriptionTranscription030217 neurology & neurosurgeryH2B ubiquitinationEMBO reports
researchProduct

Alternative Splice Forms of CYLD Mediate Ubiquitination of SMAD7 to Prevent TGFB Signaling and Promote Colitis

2018

Background & Aims The CYLD lysine 63 deubiquitinase gene (CYLD) encodes tumor suppressor protein that is mutated in familial cylindromatosus, and variants have been associated with Crohn disease (CD). Splice forms of CYLD that lack exons 7 and 8 regulate transcription factors and functions of immune cells. We examined the expression of splice forms of CYLD in colon tissues from patients with CD and their effects in mice. Methods We performed immunohistochemical analyses of colon tissues from patients with untreated CD and patients without inflammatory bowel diseases (controls). We obtained mice that expressed splice forms of CYLD (sCYLD mice) without or with SMAD7 (sCYLD/SMAD7 mice) from tr…

0301 basic medicineTranscription FactorBiopsyInbred C57BLTransgenicImmune RegulationSettore MED/12MiceRandom Allocation0302 clinical medicineCrohn DiseaseReference ValuesNeedleIntestinal Mucosaintegumentary systemChemistryBiopsy NeedleGastroenterologyT helper cellFlow CytometryPost-translational ModificationImmunohistochemistryDeubiquitinating Enzyme CYLDCysteine Endopeptidasesmedicine.anatomical_structure030211 gastroenterology & hepatologyTumor necrosis factor alphaSignal TransductionGenetically modified mouseRegulatory T cellTransgeneMice TransgenicSmad7 ProteinTransforming Growth Factor beta103 medical and health sciencesImmune systemmedicineAnimalsHumansCytokine SignalingHepatologyAnimalHEK 293 cellsUbiquitinationMolecular biologyMice Inbred C57BLDisease Models Animal030104 developmental biologyDisease ModelsCytokine Signaling; Immune Regulation; Post-translational Modification; Transcription Factor; Biopsy Needle; Crohn Disease; Cysteine Endopeptidases; Deubiquitinating Enzyme CYLD; Disease Models Animal; Flow Cytometry; Immunohistochemistry; Intestinal Mucosa; Mice Inbred C57BL; Mice Transgenic; Random Allocation; Reference Values; Signal Transduction; Smad7 Protein; Transforming Growth Factor beta1; UbiquitinationTransforming growth factorGastroenterology
researchProduct

Synthetic Polyclonal-Derived CDR Peptides as an Innovative Strategy in Glaucoma Therapy

2019

The pathogenesis of glaucoma is strongly associated with the occurrence of autoimmune-mediated loss of retinal ganglion cells (RGCs) and additionally, recent evidence shows that specific antibody-derived signature peptides are significantly differentially expressed in sera of primary-open angle glaucoma patients (POAG) compared to healthy controls. Synthetically antibody-derived peptides can modulate various effector functions of the immune system and act as antimicrobial or antiviral molecules. In an ex vivo adolescent glaucoma model, this study, for the first time, demonstrates that polyclonal-derived complementarity-determining regions (CDRs) can significantly increase the survival rate …

<i>Sus scrofa domestica</i>lcsh:MedicineRetinal ganglionEpitopeArticleSus scrofa domestica03 medical and health scienceschemistry.chemical_compound0302 clinical medicineImmune systemMedicine030304 developmental biology0303 health sciencesHTRA2synthetic CDR peptidesbusiness.industrylcsh:RautoimmunityRetinalGeneral MedicineProtein ubiquitinationCell biologyglaucomachemistryneuroprotectionSignal transductionbusinessVDAC2030217 neurology & neurosurgeryEx vivoJournal of Clinical Medicine
researchProduct

Doxorubicin anti-tumor mechanisms include Hsp60 post-translational modifications leading to the Hsp60/p53 complex dissociation and instauration of re…

2017

Hsp60 is a pro-carcinogenic chaperonin in certain tumor types by interfering with apoptosis and with tumor cell death. In these tumors, it is not known whether or not doxorubicin anti-tumor effects include a blockage of the pro-carcinogenic action of this protein. We used the human lung mucoepidermoid cell line NCI-H292 and different doses of doxorubicin to measure cell viability, cell cycle progression, cell senescence indicators, Hsp60 levels and its post-translational modifications as well as the release of the chaperonin into the extracellular environment. Cell viability was reduced in relation to doxorubicin dose and this was paralleled by the appearance of cell senescence markers. Con…

0301 basic medicineCancer ResearchLung NeoplasmsChaperoninsCellApoptosismedicine.disease_causeHistones0302 clinical medicineCellular SenescenceAntibiotics AntineoplasticAcetylationG2 Phase Cell Cycle Checkpointsmedicine.anatomical_structureOncology030220 oncology & carcinogenesisCell agingIntracellularProtein BindingSignal TransductionSenescenceCyclin-Dependent Kinase Inhibitor p21animal structuresCell Survivalchemical and pharmacologic phenomenaBiologycomplex mixturesMitochondrial ProteinsDoxorubicin Hsp60 Acetylation Ubiquitination p53 Replicative senescence03 medical and health sciencesDoxorubicin; Hsp60; p53; replicative senescence; post-translational modificationsCell Line TumormedicineHumansCell Proliferationdoxorubicin p53 Hsp60Dose-Response Relationship DrugCell growthfungiUbiquitinationChaperonin 60Molecular biology030104 developmental biologyAcetylationApoptosisDoxorubicinProteolysisCancer researchCarcinoma MucoepidermoidTumor Suppressor Protein p53CarcinogenesisProtein Processing Post-Translational
researchProduct

UbcD1 is a Histone H2B Ubiquitin-Conjugating Enzyme Essential for Global Chromatin Structure and Gene Expression Regulation

2014

UbcD1 ubiquitination chromatin drosophila
researchProduct

Unveiling novel interactions of histone chaperone Asf1 linked to TREX-2 factors Sus1 and Thp1

2014

13 páginas, 7 figuras, 2 yablas

Saccharomyces cerevisiae ProteinsTranscription Genetic(5-10) yAsf1Histone H2B ubiquitinationCell Cycle ProteinsSAGASaccharomyces cerevisiaeBiologyyeastMethylationTREX-2RNA TransportHistonesSus1Histone H3Histone H1Gene Expression Regulation FungalhistonesHistone H2ANucleosomeHistone codeTAP-MS strategyHistone ChaperonesRNA MessengerHistone octamerGeneticsNuclear ProteinsRNA-Binding ProteinsAcetylationCell BiologyYeastCell biologyRibonucleoproteinsHistone methyltransferaseProtein Processing Post-TranslationalMolecular ChaperonesResearch Paper
researchProduct

Altered REDD1, myostatin, and Akt/mTOR/FoxO/MAPK signaling in streptozotocin-induced diabetic muscle atrophy

2011

Type 1 diabetes, if poorly controlled, leads to skeletal muscle atrophy, decreasing the quality of life. We aimed to search highly responsive genes in diabetic muscle atrophy in a common diabetes model and to further characterize associated signaling pathways. Mice were killed 1, 3, or 5 wk after streptozotocin or control. Gene expression of calf muscles was analyzed using microarray and protein signaling with Western blotting. We identified translational repressor protein REDD1 (regulated in development and DNA damage responses) that increased seven- to eightfold and was associated with muscle atrophy in diabetes. The diabetes-induced increase in REDD1 was confirmed at the protein level. …

Malemedicine.medical_specialtyMAP Kinase Signaling SystemPhysiologyEndocrinology Diabetes and MetabolismFOXO1P70-S6 Kinase 1MyostatinBiologyMiceRandom Allocation03 medical and health sciences0302 clinical medicinePhysiology (medical)Internal medicinemedicineAnimalsRNA MessengerPhosphorylationMuscle SkeletalProtein kinase BPI3K/AKT/mTOR pathwayOligonucleotide Array Sequence Analysis030304 developmental biology0303 health sciencesForkhead Box Protein O1Gene Expression ProfilingTOR Serine-Threonine KinasesUbiquitinationForkhead Transcription FactorsOrgan SizeMyostatinProtein ubiquitinationMuscle atrophyMuscular AtrophyDNA Repair EnzymesDiabetes Mellitus Type 1EndocrinologyGene Expression Regulationbiology.proteinPhosphorylationmedicine.symptomProto-Oncogene Proteins c-akt030217 neurology & neurosurgeryTranscription FactorsAmerican Journal of Physiology-Endocrinology and Metabolism
researchProduct

Alix protein is substrate of Ozz-E3 ligase and modulates actin remodeling in skeletal muscle

2012

Alix/AIP1 is a multifunctional adaptor protein that participates in basic cellular processes, including membrane trafficking and actin cytoskeleton assembly, by binding selectively to a variety of partner proteins. However, the mechanisms regulating Alix turnover, subcellular distribution, and function in muscle cells are unknown. We now report that Alix is expressed in skeletal muscle throughout myogenic differentiation. In myotubes, a specific pool of Alix colocalizes with Ozz, the substrate-binding component of the muscle-specific ubiquitin ligase complex Ozz-E3. We found that interaction of the two endogenous proteins in the differentiated muscle fibers changes Alix conformation and pro…

Ubiquitin-Protein LigasesMuscle Fibers Skeletalmacromolecular substancesBiochemistryCell LineMiceCell MovementTwo-Hybrid System TechniquesmedicineCell AdhesionAnimalsProtein Interaction Domains and MotifsPseudopodiaMuscle SkeletalMolecular BiologyActinMice KnockoutbiologyMyogenesisSettore BIO/16 - Anatomia UmanaCalcium-Binding ProteinsUbiquitinationActin remodelingSkeletal muscleUbiquitin-Protein Ligase ComplexesCell BiologyActin cytoskeletonUbiquitin ligaseCell biologyRepressor ProteinsActin CytoskeletonProtein Transportmedicine.anatomical_structureUbiquitin ligase complexbiology.proteinCell Migration Myogenesis Skeletal Muscle Ubiquitin Ligase Ubiquitination Alix F-actin Ozz-E3 Ubiquitin Ligase Skeletal Muscle CellsCortactinCortactinProtein Binding
researchProduct

2020

Over the last decade, the E3-ubiquitine ligases from IAP (Inhibitor of Apoptosis) family have emerged as potent regulators of immune response. In immune cells, they control signaling pathways driving differentiation and inflammation in response to stimulation of tumor necrosis factor receptor (TNFR) family, pattern-recognition receptors (PRRs), and some cytokine receptors. They are able to control the activity, the cellular fate, or the stability of actors of signaling pathways, acting at different levels from components of receptor-associated multiprotein complexes to signaling effectors and transcription factors, as well as cytoskeleton regulators. Much less is known about ubiquitination …

0303 health sciencesCell signalingbiologymedicine.medical_treatmentGeneral MedicineInhibitor of apoptosisProtein ubiquitinationCell biology03 medical and health sciences0302 clinical medicineCytokineUbiquitin030220 oncology & carcinogenesisbiology.proteinmedicineSignal transductionReceptorTranscription factor030304 developmental biologyCells
researchProduct